Project Jupyter

pandas

seaborn: statistical data visualization - seaborn 0.11.1 documentation

Ubuntu installation sudo apt-get update // update apt sudo apt install python3-pip // install python

Crypto related libaryies pip3 install pycryptodome pysha3 // install pysha3 libary pip3 install web3 // instal web JS sudo pip3 install pyethash // instal the mining algorlitem

intro to data analysis

type (2) // returens int 
type(3.2) // float 
type( 'hello') // str
10<2 // fuls 
me in self // fulse 

Stayling text
# text // h1 
## text // h2
- text // bullet 

Variabels 
name = 'sally'
len(name) //  (4)built in function of leangth 
'sally'. upper // SALLY 
name.lower // lower case the name var 

Data surceing 

import pandas and seaborn // use the link to import 
!ls 'work'
listining_df = pd.read_CSV('work/fileName.CSV')
type(listing_df)
listing_df.shape // count of table 
listing_DF.dtypes // data types 
listing_df.columns
listing_df.head // first 5 resultes 

listing_df.isnull().sum() //show how many nulls are found in colums 
colums_to_drop = ['id', 'host name', 'last_review']
listing_df.drop(colums_todrop, axis='columns' , inplace=true)

listing_df
Listing_df['name'] // all of the values of the name
listing_df[0:2] // slice of rows form 0 to 1 
listing_df[0:8] (['name', 'proce']) // combining rows slice and columes 

what are the most reviewed listings 
listings_df.nlargest(10, 'number_of_reviews')

ny groups

https://learn.lewagon.com/onboarding?secure_token=12a1ccdcb60b4f47aff6b62249b78789

(https://learn.lewagon.com/c/3024/b/3669)

pip install pandas seaborn

import pandas as pd
import seaborn as sns

---
<https://notebooks.gesis.org/binder/jupyter/user/lewagon-data-analytics-sprint-20facgml/tree>

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0bb759c4-c7f0-455e-bb8c-2cdc2da60f5d/Untitled.png

Yair Gordon on LinkedIn [email protected]